LS Fuchs

Soft Condensed Matter

Login |
 
 

WS 2011/2012

Dozenten: M. Fuchs und R. Haussmann

Stochastische Prozesse mit Anwendung in Statistischer Physik und auf Finanzmärkte

Die Vorlesung gibt eine Einführung in die Stochastischen Prozesse, zuerst aus der Sicht der statistischen Mechanik für physikalische Systeme im Nichtgleichgewicht dann in Hinblick auf wirtschaftswissenschaftliche Anwendungen.

Betrachtet wird zunächst die Brownsche Bewegung in einem Medium, um die Grundgleichungen für stochastische Prozesse herzuleiten, wie Diffusions-, Langevin- und Fokker-Planck-Gleichungen. Mastergleichungen und Korrelationsfunktionen werden ferner diskutiert und die Ursache und Wirkung von thermischen Fluktuationen untersucht.

Im zweiten Teil der Vorlesung werden die Methoden angewendet um die Dynamik der Finanzmärkte aus physikalischer Sicht zu verstehen: Bewertung von Unternehmen, Investitionen und Wertpapieren, Hypothese der effizienten Märkte, stochastische Gleichungen für die zeitliche Entwicklung von Aktienkursen, Optionspreistheorie von Black und Scholes, Portfoliotheorie von Markowitz, Risikomanagement, numerische Lösung stochastischer Differentialgleichungen, fraktale Theorie von Mandelbrot und Levy-Verteilungen, Chrash-Theorie von Sornette, Minder-heitenspiel, Multiagentenmodelle.

Für weitere Informationen und Literatur siehe: www.haussmann.gmxhome.de/konstanz.html

Termine:

Vorlesung 4-stündig: Di 12-14:00, P 602 und Do 14-16:00, P 712

Übung 2-stündig:      Do 12-14:00

 

Übungsblätter

PDF Blatt1

PDF Blatt2

PDF Blatt3

PDF Blatt4

PDF Blatt5

PDF Blatt6

PDF Blatt7

PDF Blatt8

PDF Blatt9

PDF Blatt10

PDF Blatt11

PDF Blatt12

PDF Blatt13